The Remarkable Transformation of Fused-ring Norbornene Bridgemethylene Alcohols into a Product identified by X-Ray Diffraction as containing the Novel Tetracyclo[5.3.1.0 ${ }^{2.6} .^{5.9}$]undecene System

By Kevin A. Mead, Kenneth Mackenzie," and Peter Woodward, School of Chemistry, The University, Bristol BS8 1 TS

Abstract

Treatment of anti- and syn-epimers (1) and (2) of exo-endo-3,4,5,6-tetrachlorotetracyclo[6.2.1.1 ${ }^{3.6} .0^{2.7}$]dodeca-4,9-dien-11-ol with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{CCl}_{4}$ gives besides the previously recognised tetrachloropentacyclododecanone (3) small but significant amounts of 1,3,4,11-tetrachloro-2-formyltetracyclo[5.3.1.0 2.60.5.9]undec-3-ene (12), an apparently novel ring system derived by a new rearrangement sequence. The structure of tetrachlorotetracycloundecene (12) follows from the X-ray crystal structure of the methanesulphonate (14) of its simple 2-hydroxymethyl reduction product. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. characteristics of (12), its various deuteriated analogues, and their synthesis are discussed.

The effect of substituents on the rearrangement and cyclisation modes of bridged polycyclic π-proximate cations has been the subject of both theoretical ${ }^{1}$ and experimental investigation. We have previously reported the results of using e.g. bridge-methylene alcohols (1) and (2) as substrates in acid-catalysed reactions. Treatment of either anti- or syn-tetrachlorotetracyclododecadienol (1) or (2) with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{CCl}_{4}$ gives (in somewhat variable yield) two well defined products; one of these has been shown to be tetrachloropentacyclododecanone (3), the product of a reaction sequence involving cross-cyclisation in the relevant face-proximate $\pi-\mathrm{C}_{2} p$ cation as illustrated in Scheme 1 (path 1). ${ }^{2}$ The second product is a compound ' X ', $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}$, isomeric with ketone (3), shown below to be compound (12), m.p. $139-140{ }^{\circ} \mathrm{C}, m / e 310\left(M^{+}\right)$, $282\left(M-\mathrm{CHO}^{+\cdot}\right)$, and 113 $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}^{+}\right)$whose identity as an unsaturated aldehyde is confirmed by i.r. and n.m.r. data, $v_{\text {max }} 2870-2875 \mathrm{~s}$ and $2720-2730 \mathrm{w}$ (CHO), 1718 vs ($\mathrm{C}=\mathrm{O}$ st.), and 1620 ms $\mathrm{cm}^{-1}(\mathrm{ClC=CCl}), \tau_{\mathrm{H}}-0.25(\mathrm{~d}, J c a .0 .6 \mathrm{~Hz}, \mathrm{CHO})(\mathrm{A}), \delta_{\mathrm{C}}$ 198.3 (CHO), 129.9 , and 122.5 p.p.m. (quaternary, $=$ CCl). The offset-decoupled ${ }^{13} \mathrm{C}$ spectrum of aldehyde (12), besides displaying signals confirming these assignments, also clearly indicates chloromethylene (76.14 p.p.m., $\mathrm{CHCl}^{\mathrm{CHCl}}$, saturated methine ($56.8,54.5,44.8$, and 36.9 p.p.m.,,$=\mathrm{CH}$), methylene (41.9 and 43.1 p.p.m.,, CH_{2}), and saturated quaternary (71.0 and 70.9 p.p.m., $\geqslant \mathrm{CCl}$, $\geqslant \mathrm{CCHO}$) carbon atoms. In the ${ }^{1} \mathrm{H}$ resonance spectrum other counterpart signals \dagger appear at $\tau 5.66(\mathrm{~s}, \mathrm{CHCl})(\mathrm{B})$, 6.05 (tnd) (C), 7.08 (dd) (D), 7.32 (tnm) (E), and 7.62 (cm) (four $>\mathrm{CH}$) (F), and partially resolved overlapping signals due to two $-\mathrm{CH}_{2}$ groups at 7.68 (t$), 7.75$ (t) (G), $7.91(\mathrm{nq}), 7.98(\mathrm{~nm})(\mathrm{H})$, and $8.0(\mathrm{~cm})(\mathrm{I})$.

Precedent exists ${ }^{3}$ for the extrusion of hydroxylated bridge-methylene as a formyl group in the acid-catalysed rearrangement of dieldrin (4), and a similar ring-scission must account for the formyl group in aldehyde (12) since protolysis of $\left[11-{ }^{2} \mathrm{H}\right]-(1)$ and/or $\left[11-{ }^{2} \mathrm{H}\right]-(2)$ gives

[^0]product $\left[12-{ }^{2} \mathrm{H}\right]-\mathrm{X}^{\prime}$ ' with no significant ${ }^{1} \mathrm{H}$ n.m.r. signal near $\tau-0.25\left({ }^{2} \mathrm{HCO}\right)$. However, whilst rearrangement of dieldrin via a half-cage cation intermediate $C-3$ is initiated by electrophilic attack at the oxiran ring, followed by 1,2 (Wagner-Meerwein) rearrangement, parallel cyclisation, and hydride transfer, the protolytic rearrangement of (1) and (2) is initiated by protonation of the remote unsubstituted 9,10 -olefinic group, implicating intermediate $C-1$ in the first step, in common with the transformation into ketone (3). This is most clearly seen if the reactions are carried out in ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{CCl}_{4}$. The mass spectrum and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonance spectra of the monodeuteriated aldehyde product $\left[{ }^{2} \mathrm{H}\right]-(12) \mathrm{C}_{12}{ }^{1} \mathrm{H}_{9}{ }^{2} \mathrm{H}$ $\mathrm{Cl}_{4} \mathrm{O}\left[m / e 311\left(M^{+\cdot}\right), 282\left(M-\mathrm{CHO}^{+}\right)\right.$, and 114 $\left.\left(\mathrm{C}_{8}{ }^{1} \mathrm{H}_{5}{ }^{2} \mathrm{HCl}\right)\right]$ clearly indicate deuteriation of one of the CH_{2} groups; the ${ }^{1} \mathrm{H}$ signal near $\tau 8.0$ is simplified and reduced in intensity (the remaining signals, surprisingly, appearing little affected by this substitution). In the ${ }^{13} \mathrm{C}$ range all signals for the monodeuterioaldehyde virtually coincide with those in the decaprotio-compound except for the ${ }_{-} \mathrm{CH}_{2}$ signal at $\delta 41.9$ p.p.m.; this appears as an isotope-shifted ${ }^{-} \mathrm{C}^{1} \mathrm{H}^{2} \mathrm{H}$ triplet $(40.6,41.5$, and 42.4 p.p.m. due to $\mathrm{C}-{ }^{2} \mathrm{H}$ coupling) with residual $\int^{2} \mathrm{H}_{2}$ resolved at $\delta 41.9$ p.p.m. Further information about the genesis and structure of aldehyde (12) is obtained by ${ }^{1} \mathrm{H}_{2} \mathrm{SO}_{4}$ or ${ }^{2} \mathrm{H}_{2}$ SO_{4} treatment of the readily accessible di- and more difficulty accessible tetra-deuterioalcohols (10) and (11) (Scheme 2) as alternative sources of cation intermediate C-l implicated in the rearrangement. Protolysis of dideuterioalcohol mixture (10) gives aldehyde $\left[{ }^{2} \mathrm{H}_{2}\right]$-(12), $\mathrm{C}_{12}{ }^{1} \mathrm{H}_{8}{ }^{2} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}\left[m / e 312\left(M^{+\cdot}\right), 282\left(M-{ }^{2} \mathrm{HCO}^{+}\right)^{+}\right)$, and $114\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{4}{ }^{2} \mathrm{HCl}\right)$] ; at $100 \mathrm{MHz},{ }^{1} \mathrm{H}$ resonance signals (A)(I) characteristic of the decaprotioaldehyde are absent or significantly modified as follows: (A), absent; (C), collapses from tnm to dnm; (E), very weak. Other signals are little affected or show only slightly modified resolution. A similar reaction with tetradeuterioalcohol (11) gives aldehyde $\left[{ }^{2} \mathrm{H}_{4}\right]$-(12), $\mathrm{C}_{12}{ }^{1} \mathrm{H}_{6}{ }^{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}$ [$\mathrm{m} / \mathrm{e} 313$ (314), 284 (283), 116 (115) $\Varangle 60 \% .{ }^{2} \mathrm{H}_{4}$ compound], $\tau_{\mathrm{H}}(220 \mathrm{MHz})-0.25(\mathrm{~d}, J$ ca. 0.6 Hz , residual CHO) (A), 5.67 (sharp s, CHCl) (B), 6.05 (dnm, $J 6.8$, 1.07 Hz) (C), 7.09 (qnd, $J 6.8,3.5,0.6 \mathrm{~Hz}$) (D), (E)

(3)
(1) $R^{1}=H, R^{2}=O H$
(2) $R^{1}=O H, R^{2}=H$

(3)

(12) RaCHO
(13) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
(14) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{Me}$

Scheme 1

absent, 7.61 (cm) (F) (reduced complexity). One - $^{(\mathrm{CH}}{ }_{2}$ group signal is cleanly resolved into two pairs of quartets at $\tau_{\mathrm{H}} 7.68,7.75\left({ }^{2} J 13.7\right.$, other $\left.J 3.5,2.1 \mathrm{~Hz}\right)(\mathrm{G})$ and 7.91 , $7.98\left({ }^{2} J 13.7\right.$, other $\left.J 2.1,1.07 \mathrm{~Hz}\right)(\mathrm{H})$. The other ${ }^{-} \mathrm{CH}_{2}$ group signal (I) reduces to a broadened singlet of drastically reduced intensity (residual ${ }^{-} \mathrm{C}^{1} \mathrm{H}_{2}$).

Attempted rationalisation of these data with possible structures for (12) deriving from familiar rearrangement processes ${ }^{\mathbf{2 , 4}}$ for cations related to $C-1$ proves elusively difficult.* However it does seem clear that the monoand bis-deuteriated carbons in the non-chlorinated ring in substrate alcohol (11) become methine and methylene carbons in the aldehyde product (12). It follows that
the initial sequences in the acid-catalysed reaction are protonation with concomitant Wagner-Meerwein rearrangement, as in the genesis of ketone (3), with cyclisation and then further rearrangement-ring scission.

One other important structural observation is that $\mathrm{LiAlH}_{4}-\mathrm{Et}_{2} \mathrm{O}$ converts aldehyde $\left[12-{ }^{2} \mathrm{H}\right]-(12)$ into a primary alcohol (13) [$\tau_{\mathrm{H}} 5.35$ (d), and 8.30 (d, $J c a .8 \mathrm{~Hz}$, $\left.\left.\mathrm{C}^{1} \mathrm{H}^{2} \mathrm{HOH}\right)\right]$ in which signal (C) shows the largest upfield

[^1] resolution.

(5)

(10) $R={ }^{1} \mathrm{H} \rightarrow\left[{ }^{2} \mathrm{H}_{2}\right]-[12]$
(11) $R={ }^{2} H \rightarrow\left[{ }^{2} H_{4}\right]-[12]$

(8a)
Scheme 2 Reagents: (i) ${ }^{i} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ONO}-\mathrm{HCl}-\mathrm{HOAc}$; (ii) aq. $\mathrm{HBr}-\mathrm{HOAc}$; (iii) $\mathrm{Zn}-\mathrm{HOAc}-\mathrm{Et}_{2} \mathrm{O}$; (iv) ${ }^{1} \mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{MeO}^{2} \mathrm{H}-\mathrm{Bu}^{t} \mathrm{O}^{-}$ (0.3%) then ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$; (v) $\mathrm{LiAl}^{2} \mathrm{H}_{4}-\mathrm{Et}_{2} \mathrm{O}$; (vi) $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}^{+}$; (vii) heat, -CO
shift (+0.3 p.p.m.) whilst retaining its general appearance; in the presence of $\operatorname{Pr}(\mathrm{fod})_{3}(8.1: 1$ mol. ratio $)$ this signal is also the most strongly affected in (13) $(\Delta \tau+2.4)$ followed by (D), (E), and (B) $(\Delta \tau+0.7,+0.6,+0.4)$.

Aldehyde (12) fails to produce satisfactory crystals for an X-ray diffraction study but fortunately the methanesulphonate (14) of its reduction product (13) forms excellent monoclinic needles; the results of an X-ray crystallographic structural determination are summarised in Tables $\mathbf{1 - 3}$ and the structure of the methanesulphonate ester (14) is illustrated in Figures 1 and 2.

The carbon skeleton of the molecule comprises a system of three fused five-membered rings which all have the tetrahedral atom $\mathrm{C}(6)$ in common. All three rings are of non-planar ' envolope' conformation, but in the case of ring $\mathrm{C}(2)-\mathrm{C}(6)$ the presence of a double bond between atoms C(3) and C(4), each of which carries a substituent chlorine atom, causes the fragment $\mathrm{C}(2)$,
$\mathrm{C}(3), \mathrm{Cl}(3), \mathrm{C}(4), \mathrm{Cl}(4)$, and $\mathrm{C}(5)$ to be planar. All the remaining C atoms in the molecule are tetrahedral. The bond $\mathrm{C}(2)-\mathrm{C}(6)$ is common to this ring and to the ring $\mathrm{C}(2), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(11), \mathrm{C}(1)$. In this latter ring, atoms $\mathrm{C}(1)$ and $\mathrm{C}(11)$ each carry chlorine atom substituents which make a torsion angle $\mathrm{Cl}(\mathbf{1 1})-\mathrm{C}(11)-\mathrm{C}(\mathbf{1})-\mathrm{Cl}(\mathbf{1})$ of 49.0° (see Table 3). Atoms C(2), C(6), C(7), and C(11) are, however, coplanar (torsion angle -0.3°). In this ring the bond $\mathrm{C}(6)-\mathrm{C}(7)$ is common to the adjoining ring $\mathrm{C}(6)-\mathrm{C}(9), \mathrm{C}(5)$, where it is found that atoms $\mathrm{C}(5)-$ $\mathrm{C}(8)$ are substantially coplanar (torsion angle -4.0°). The bond $\mathrm{C}(5)-\mathrm{C}(6)$ is, of course, common to the first ring $\mathrm{C}(2)-\mathrm{C}(6)$.

The orientation of the $\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{Me}$ chain is presumably determined mainly by the weak intra- and intermolecular forces of the molecular array in the crystal. Interestingly the methylene protons of the $\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{Me}$ group appear as a well separated pair of doublets at
$\tau 4.68(\mathrm{~d})$ and $5.5(\mathrm{~d}, J 11 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ resonance spectrum of the methanesulphonate, and whilst this is possibly due to their diastereoisotopic nature it could also be due to restricted rotation of the group on account of the proximate chlorine atoms $\mathrm{Cl}(1), \mathrm{Cl}(3)$, and $\mathrm{Cl}(11)$. The

Table 1

Atomic positional (fractional co-ordinates) parameters with estimated standard deviations in parentheses for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3} \mathrm{~S}$

Atom	x	y	z
$\mathrm{Cl}(1)$	$0.42090(9)$	0.757 63(4)	$0.41316(5)$
$\mathrm{Cl}(3)$	$0.58423(11)$	$0.96182(4)$	$0.37054(7)$
$\mathrm{Cl}(4)$	$1.00769(11)$	$0.94660(5)$	0.34010 (7)
$\mathrm{Cl}(11)$	$0.32740(8)$	$0.66108(4)$	$0.16573(6)$
S	0.250 07(7)	0.95691 (3)	$0.03282(5)$
$\mathrm{O}(1)$	$0.4105(3)$	0.904 93(13)	$0.08956(14)$
$\mathrm{O}(2)$	0.089 9(3)	$0.91935(11)$	0.050 6(2)
$\mathrm{O}(3)$	$0.2824(3)$	0.969 48(11)	-0.080 73(15)
C(1)	0.5741 (4)	$0.75202(14)$	0.313 6(2)
C(2)	$0.5667(3)$	$0.82506(14)$	0.233 2(2)
$\mathrm{C}(3)$	0.673 4(4)	0.893 49(15)	0.2894 (3)
C(4)	0.8411 (4)	0.8878 (2)	0.2778 (3)
C(5)	0.8727 (4)	$0.8130(2)$	$0.2165(3)$
C(6)	0.688 4(4)	$0.79194(14)$	$0.1507(2)$
C(7)	$0.6757(4)$	0.699 77(15)	0.152 2(2)
C(8)	0.8597 (4)	0.674 2(2)	$0.2115(3)$
$\mathrm{C}(9)$	0.9024 (4)	0.741 6(2)	0.2974 (3)
C(10)	0.763 4(4)	0.743 38(15)	0.379 3(2)
C(11)	0.548 2(4)	$0.68002(14)$	$0.2355(3)$
C(12)	0.383 3(4)	$0.85032(15)$	0.1800 (3)
C(13)	0.2791 (4)	1.044 43(15)	0.1098 (3)
H(5)	$0.982(7)$	0.824(3)	$0.175(4)$
H(6)	0.662(4)	0.815 (2)	$0.066(3)$
H(7)	0.635(4)	0.663(2)	$0.082(3)$
$\mathrm{H}(8 \mathrm{~A})$	$0.928(5)$	0.669(3)	0.148 (4)
$\mathrm{H}(8 \mathrm{~B})$	0.854(5)	$0.623(2)$	$0.244(3)$
$\mathrm{H}(9)$	1.009(5)	0.743 (2)	$0.332(3)$
$\mathrm{H}(10 \mathrm{~A})$	0.781 (5)	0.786(2)	0.428(3)
$\mathrm{H}(10 \mathrm{~B})$	$0.762(5)$	0.700(2)	0.420 (3)
H(11)	$0.571(5)$	0.628(3)	0.277(3)
H (12A)	0.338(4)	0.883(2)	0.232(3)
$\mathrm{H}(12 \mathrm{~B})$	0.321 (6)	0.809(3)	$0.144(4)$
$\mathrm{H}(13 \mathrm{~A})$	0.271 (6)	1.032(3)	$0.191(4)$
$\mathrm{H}(13 \mathrm{~B})$	0.390(6)	1.068(3)	$0.110(4)$
H(13C)	0.179(4)	1.077(2)	0.077(3)

${ }^{1} \mathrm{H}$ signals (B)-(I) in the aldehyde (12) become recognisable as those due to $\mathrm{H}(11), \mathrm{H}(6)$ [deshielded compared to allylic $\mathrm{H}(5)$ by the electronegative environment], $\mathrm{H}(5)$ (allylic), $\mathrm{H}(7), \mathrm{H}(9)$ (multiple couplings), $\mathrm{H}(10)$ (syn to $\mathrm{ClC}=\mathrm{CCl}$), $\mathrm{H}(10)$ (anti to $\mathrm{ClC}=\mathrm{CCl}$), and $\mathrm{H}\left(8,8^{\prime}\right)$ $\left(\mathrm{CH}_{2} \mathrm{AB}\right.$ system with further couplings) respectively. These results unequivocally indicate aldehyde (12) to be 1,3,4,11-tetrachloro-2-formyltetracyclo[5.3.1.0 2,6.0 $0^{5,9}$]-undec-3-ene which to the best of our knowledge has no analogues.*

Details of the mechanism of formation of the aldehyde (12) from alcohols (1) and (2) remain to be worked out but one possible reaction scheme consistent with the data above is illustrated in Scheme 1 (path 2); this implies that parallel cyclisation in cation C-l competes significantly in this system with cross-cyclisation ultimately leading to ketone (3) via path 1 , and that ener-

[^2]Table 2
Bond lengths (\AA) and inter-bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3} \mathrm{~S}$

(i) Distances			
$\mathrm{Cl}(1)-\mathrm{C}(1)$	1.796(3)	$\mathrm{Cl}(3)-\mathrm{C}(3)$	1.719(3)
$\mathrm{Cl}(4)-\mathrm{C}(4)$	1.704(3)	$\mathrm{Cl}(11)-\mathrm{C}(11)$	1.802(3)
$\mathrm{S}-\mathrm{O}(1)$	1.533(2)	$\mathrm{S}-\mathrm{O}(2)$	$1.432(2)$
$\mathrm{S}-\mathrm{O}(3)$	1.426(2)	$\mathrm{S}-\mathrm{C}(13)$	1.744(3)
$\mathrm{O}(1)-\mathrm{C}(12)$	1.461(3)	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.563(3)$
$\mathrm{C}(1)-\mathrm{C}(10)$	1.551(3)	$\mathrm{C}(1)-\mathrm{C}(11)$	1.532(3)
$\mathrm{C}(2)-\mathrm{C}(6)$	1.551(4)	$\mathrm{C}(3)-\mathrm{C}(2)$	1.519(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.321(4)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.504(4)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.545(4)	$\mathrm{C}(6)-\mathrm{C}(5)$	1.553(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.571(3)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.544(4)
$\mathrm{C}(9)-\mathrm{C}(8)$	1.537(4)	$\mathrm{C}(10)-\mathrm{C}(9)$	1.552(4)
$\mathrm{C}(11)-\mathrm{C}(7)$	1.533(4)	$\mathrm{C}(12)-\mathrm{C}(2)$	1.518(3)
$\mathrm{C}(5)-\mathrm{H}(5)$	1.05(6)	$\mathrm{C}(6)-\mathrm{H}(6)$	1.08(3)
$\mathrm{C}(7)-\mathrm{H}(7)$	1.05(3)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.98(4)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.95(4)	$\mathrm{C}(9)-\mathrm{H}(9)$	0.87(3)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.93(4)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.88(4)
$\mathrm{C}(11)-\mathrm{H}(11)$	1.02(4)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.94(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.92(4)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	1.00(4)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.94(5)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.98(3)
(ii) Angles			
$\mathrm{O}(\mathbf{1})-\mathrm{S}-\mathrm{O}(2)$	108.7(1)	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3)$	104.5(1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$	119.0(1)	$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(13)$	102.9(1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(13)$	110.3(1)	$\mathrm{O}(3)-\mathrm{S}-\mathrm{C}(13)$	110.0(1)
$\mathrm{S}-\mathrm{O}(1)-\mathrm{C}(12)$	118.6(2)	$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.3(2)
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	109.5(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	109.1 (2)
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	113.9(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	106.0(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)$	104.8(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.9(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	97.4(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	102.6(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	$115.1(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)$	111.8(2)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(12)$	116.7(2)	$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	122.0(2)
$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	126.0(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.6(2)
$\mathrm{Cl}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	126.4(2)	$\mathrm{Cl}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	122.7(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.2(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	103.7(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	112.5(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	99.7(2)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	100.9(2)	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	108.0(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	106.2(2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	103.4(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	105.8(2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	106.0(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	100.5(2)	$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(8)$	100.1(2)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	108.9(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	109.5(2)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	111.7(2)	$\mathrm{Cl}(11)-\mathrm{C}(11)-\mathrm{C}(1)$	116.6(2)
$\mathrm{Cl}(11)-\mathrm{C}(11)-\mathrm{C}(7)$	113.1(2)	$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(7)$	100.4(2)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(2)$	105.0(2)		

Table 3
Selected torsion angles $\left({ }^{\circ}\right)$ for compound (14)

$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	-47
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{Cl}(11)$	49
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	-178
$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(4)$	0
$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	-88
$\mathrm{Cl}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	$\mathbf{- 3 6}$
$\mathrm{H}(11)-\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{H}(7)$	-66
$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	72
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	-69
$\mathrm{H}(9)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	-64
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)$	-28
$\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	-6
$\mathrm{H}(6)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	

getic advantage not unnaturally \dagger derives from formation of stéreoelectronically favourable cyclopropylmethyl cation C-2. Diversity in cyclisation pathways has been observed in other face-proximate $\pi-\mathrm{C}_{2 p}$ cation ring closures ${ }^{6}$ but is rare in halogenated systems of the type

[^3]

Figure 1 Molecular structure of $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3} \mathrm{~S}$ with the crystallographic numbering system. The numbering of the carbon skeleton of the molecule follows the normal conventions of organic nomenclature
discussed here. Usually, only one of the two cyclisation modes, either cross or parallel, is observed; ${ }^{2}$ in the experiments described here aldehyde (12) is the major isolated product, the actual product ratio being somewhat variable, but often (12):(3) is ca. $2: 1$. However, the ratio of isolated products may not be a reliable guide to the actual relative importance of the alternative cyclisation pathways since the reaction is accompanied by considerable degradation, and some tarry and highly coloured by-products of unknown nature are also produced.
using a Unicam SP8-200 spectrometer. T.l.c. refers to preparative chromatography on 0.8 mm silica gel GF_{254} coated plates. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $98 \% \mathrm{w} / \mathrm{v} \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$. ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{LiAl}^{2} \mathrm{H}_{4}$ refer to materials of $\mathbf{9 9 . 8} \%$ isotopic purity. M.p.s are not corrected.

Crystal-Structure Determination.-Crystals of the compound (14) grow as needles elongated along a. Diffracted intensities were collected at 220 K from a prism (cut from a large needle) of dimensions $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$ on a Nicolet P3m four-circle diffractometer. Of the total of 5177 reflections measured for 2θ to $60^{\circ}, 3396$ which satisfied the criterion $I \geqslant 6.0 \sigma(I)$ were corrected for Lorentz, polarisation, and absorption effects and were used in the solution and refinement of the structure. Remeasurement of two check reflections every 50 reflections showed no significant crystal decay.

Crystal Data.- $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3} \mathrm{~S}, \quad M=392.1$, monoclinic, $a=7.693(5), b=17.007(4), c=11.894(4) \AA, \beta=98.78(4)^{\circ}$, D_{m} (aqueous flotation) $=1.64 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, D_{\mathrm{c}}=1.69 \mathrm{~g}$ $\mathrm{cm}^{-3}, U=1538(1) \AA^{3}, F(000)=800$, space group $P 2_{1} / n$ (non-standard setting of $P 2_{1} / c$, No. 14), Mo- $K_{\alpha} X$-radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $9.1 \mathrm{~cm}^{-1}$.

Structure Solution and Refinement.-The chlorine atoms were located by vector methods, and all other atoms (including hydrogen) by electron-density difference syntheses. The structure was refined by blocked-cascade least-squares, with isotropic thermal parameters for the hydrogen atoms and anisotropic thermal parameters for all other atoms. A weighting scheme of the form $w=\left[\sigma^{2}(F)\right.$ $\left.+0.0014(F)^{2}\right]^{-1}$ [where $\sigma(F)$ is the estimated error in $F_{\text {obs. }}$ based on counting statistics only] gave a satisfactory analysis of variance. Convergence was reached at $R 0.042$ (R^{\prime} 0.049), and the final electron-density difference synthesis showed no peaks >0.8 or $<-0.5 \mathrm{e}^{-3}$, the largest being in the neighbourhood of the chlorine atoms. Atomic scattering factors were from ref. 7 for hydrogen and from ref. 8 for

Figure 2 Stereoscopic view of the molecular structure of $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3} \mathrm{~S}$

EXPERIMENTAL

N.m.r. data refer to solutions in CDCl_{3} with SiMe_{4} as internal standard; ${ }^{1} \mathrm{H}$ spectra were obtained with JEOL PS100 or FX200 spectrometers, all signals having the correct relative intensity unless otherwise indicated. ${ }^{13} \mathrm{C}$ Data were acquired using a JEOL FX90Q machine. Mass spectra were obtained using an AEI-GEC MS902 doublefocusing instrument with VG Micromass facility; halogenated ions have the correct ${ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}$ abundance ratio. I.r. spectra (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CCl_{4} solution) were obtained with PE257 or PE197 instruments. U.v. spectra were obtained
all other atoms with corrections for anomalous dispersion. All computations were performed in the laboratory on an Eclipse (Data General) minicomputer with the SHELXTL system of programs. ${ }^{9}$ Observed and calculated structure factors, all thermal parameters, a complete table of torsion angles, and all inter-bond angles involving the hydrogen atoms are listed in Supplementary Publication No. SUP 23263 (26 pp .).*

1,3,4,11-Tetrachloro-2-formyltetracyclo $\left[5.3 .10 .^{2,6} .0^{5,9}\right]$ un-

* For details see Notice to Authors No. 7, J. Chem. Soc., Perkin Trans. 2, 1981, Index Issue.
dec-3-ene (12).-This was isolated and purified (t.l.c.), m.p. $140{ }^{\circ} \mathrm{C}\left(\mathrm{CCl}_{4}\right)$, as previously described. ${ }^{2}$ The aldehyde (12) $(60 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(10 \mathrm{mg}, c a .0 .25 \mathrm{mmol})$ were stirred in ether solution (8 ml) under nitrogen for 2.5 h at $20^{\circ} \mathrm{C}$ and the ether layer separated from the water-quenched reaction mixture, washed, dried, and evaporated giving substantially pure alcohol (13), which without further purification was dissolved in pyridine ($c a .2 \mathrm{ml}$) and treated with $\mathrm{MeSO}_{2} \mathrm{Cl}(75 \mathrm{mg}, c a .100 \%$ excess). The solution,
$\left.\mathrm{H}\left(8,8^{\prime}\right)\right]$; $\quad \mathbf{- 0 . 2 5}$ absent. The combined aldehyde fraction from several runs ($47 \mathrm{mg}, 0.15 \mathrm{mmol}$) was stirred with $\mathrm{LiAlH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol})$ in ether (5 ml) under nitrogen for 2 h and the product isolated in the usual way giving crystalline monodeuterioalcohol $\left[12-^{2} \mathrm{H}\right]-(13)(48 \mathrm{mg}, 100 \%)$, $\tau(100 \mathrm{MHz}) 5.35$, (d), 8.3 , (d, $\left.J 8 \mathrm{~Hz},{ }^{1} \mathrm{H}^{2} \mathrm{HCOH}\right), 5.62[\mathrm{~s}$, $\mathrm{H}(11)], 6.36$ [tnm, H(6)], 7.09, (q) overlapping $7.18[\mathrm{~nm}, \mathrm{H}(5)$, $\mathrm{H}(7)], 7.58[\mathrm{~cm}, \mathrm{H}(9)]$, and $7.7-8.1$ [overlapping m , $H\left(10,10^{\prime}\right)$ and $\left.H\left(8,8^{\prime}\right)\right]$.

Table 4
$220 \mathrm{MHz}{ }^{1} \mathrm{H}$ N.m.r. data for aldehyde (12) and its deuteriated analogues $\left(\tau ; \mathrm{CDCl}_{3}\right)$ with first-order J for $\left[{ }^{2} \mathrm{H}_{4}\right]-(12)$

Proton	(12)	[8-2 $\left.{ }^{2} \mathrm{H}\right]-(12)$
CHO [H(12)]	-0.25 (d)	-0.25 (d)
$\mathrm{H}(11)$	5.66 (s)	5.66 (s)
$\mathrm{H}(6)$	6.05 (tnm)	6.04 (tnm)
$\mathrm{H}(5)$	7.08 (dd)	7.08 (dd)
H(7)	7.32 (tnd)	7.32 (tnd)
$\mathrm{H}(9)$	7.62 (cm)	7.61 (cm)
$\mathrm{H}(10-s y n)$	7.68 (t)	7.68 (t)
$\mathrm{H}(10-s y n)$	7.75 (t)	7.75 (t)
$\mathrm{H}(10-a n t i)$	7.91 (nq)	7.90 (nq)
$\mathrm{H}(10-a n t i)$	7.98 (nm)	7.98 (nq)
H(8, 8^{\prime})	~ 8.0 (cm)	8.05 (bs)

[7,8,8,12- $\left.{ }^{2} \mathrm{H}_{4}\right]$-(12)	J / Hz
residual, v. weak	ca. 0.6
5.67 (s)	
6.05 (dnd)	6.8, 1.07
7.09 (qnd)	6.8, 3.5, 0.6
residual, v . weak	$6.7,6.7,1.4$
7.61 (cm)	
(narrowed)	
7.68 (q) \}	13.7, 2.1, 3.5
7.75 (q)	1.7, 2.1, 3.5
$\left.\begin{array}{l}7.91 \\ 7.98 \\ \text { (q) }\end{array}\right\}$	13.7, 2.1, 1.07
8.07	
(weak bs)	

Isomerization of Alcohols (1) and (2) in ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$. -In a similar experiment to that above, syn-alcohol (2) (300 mg , 0.9 mmol) was stirred in ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$ for 4 h and the product isolated by ice-quenching and chloroform extraction. The washed and dried products of two runs, combined and chromatographed (t.l.c., $3: 1 \mathrm{CCl}_{4}-\mathrm{Et}_{2} \mathrm{O}$), gave the required aldehyde $\left[8{ }^{-}{ }^{2} \mathrm{H}\right]$-(12) $(59 \mathrm{mg}, c a .10 \%), m / e$ $311\left(\mathrm{C}_{12}{ }^{1} \mathrm{H}_{9}{ }^{2} \mathrm{HCl}_{4} \mathrm{O}^{+\bullet}\right), 282\left(M-{ }^{1} \mathrm{HCO}^{+\bullet}\right), 114\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{5}{ }^{2}-\right.$ $\left.\mathrm{HCl}^{+} \cdot\right), 78\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{4}{ }^{2} \mathrm{H}^{+} \cdot\right),{ }^{1} \mathrm{H}$ n.m.r. in Table 4, $\delta_{\mathrm{C}} 198.3$ (CHO), 129.97 and 122.7 [quat., $\mathrm{C}(3), \mathrm{C}(4)], 76.2$ [C(11)], 71.0 [quat., $\mathrm{C}(1)], 56.8,54.45,44.77,36.9$ [methine $\mathrm{CH}, \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7)$, $\mathrm{C}(9)], 43.21[\mathrm{C}(10)], 42.4,41.5,40.6\left[\mathrm{C}^{1} \mathrm{H}^{2} \mathrm{H}(\mathrm{C}-8)\right.$, residual $\mathrm{C}^{1} \mathrm{H}_{2}, \delta 41.9$, weak s], 70.9 p.p.m. [quat., $\mathrm{C}(2)$ resolved in offset ${ }^{1} \mathrm{H}$-decoupled spectrum].

In a similar experiment using syn-alcohol [11-2 H$]-(2)-$ ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ the aldehyde fraction (m.p. $139-140{ }^{\circ} \mathrm{C}$) had m / e $312\left(\mathrm{C}_{12}{ }^{1} \mathrm{H}_{8}{ }^{2} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}^{+\bullet}\right), 282\left(M-{ }^{2} \mathrm{HCO}^{+\bullet}\right), 114\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{5}{ }^{2} \mathrm{HCl}^{+\bullet}\right)$, and $78\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{4}{ }^{2} \mathrm{H}\right)$, and a similar ${ }^{1} \mathrm{H}$ n.m.r. spectrum to the above product $\left[8-{ }^{2} \mathrm{H}\right]-(12)$ with $\tau-0.25$ absent.

Synthesis of (i) Di- and (ii) Tetra-deuterioaldehydes [7,12$\left.{ }^{2} \mathrm{H}_{2}\right]$-(12) and $\left[7,8,8^{\prime}, 12-{ }^{2} \mathrm{H}_{4}\right]$-(12).-endo, exo-1-exo-5,8,9,10-Pentachloro-11,11-dimethoxytetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodec-9-en-4-one (6) was made (81% yield) from exo,endo-norborn-adiene-tetrachlorodimethoxycyclopentadiene adduct (5) ${ }^{7}$ [by hydrolysis of the NOCl adduct as described in detail ${ }^{8}$ for the hexachloro-analogue of (5)], m.p. $170^{\circ} \mathrm{C}(\mathrm{HOAc}), v_{\text {max. }}$. 1770 (vs, CHClCO), 1602 (ms, $\mathrm{ClC}=\mathrm{CCl}$), and 2850 (ms, OMe) $\mathrm{cm}^{-1}, \tau(100 \mathrm{MHz}) 6.30[\mathrm{~d}, J c a .3 \mathrm{~Hz}$, endo-H(5)], 6.42 (s) and 6.47 (s) (2 MeO), $7.16[\mathrm{~m}, \mathrm{H}(3,6)], 7.30[\mathrm{~m}, \mathrm{H}(2,7)], 8.00$ [dm, ${ }^{2} J 14 \mathrm{~Hz}, \mathrm{H}(12)$ syn to exo-Cl(5)], and $8.21\left[\mathrm{dm},{ }^{2} J 14 \mathrm{~Hz}\right.$, $\mathrm{H}(12)$ anti] (Found: $\mathrm{C}, 41.8 ; \mathrm{H}, 3.6 . \quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 41.4 ; \mathrm{H}, 3.2 \%$). The 2,4-dinitrophenylhydrazone had m.p. $227-228{ }^{\circ} \mathrm{C}$ (Found: C, 40.8; H, 2.6. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{5} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 41.0 ; \mathrm{H}, \mathbf{2 . 9} \%$). Similarly prepared from adduct (5) using isopentyl nitrite-aqueous $\mathrm{HBr}-\mathrm{HOAc}$ the exo-5-bromotetrachloro-analogue of the pentachloro-keto-acetal (6), m.p. $203{ }^{\circ} \mathrm{C}$ (Found: C, 37.2; H, 2.7. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrCl}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 37.3 ; \mathrm{H}, 2.9 \%$). The pentachloro-ketone (6) was readily dechlorinated using $\mathrm{Zn}-\mathrm{HOAc}-\mathrm{Et}_{2} \mathrm{O}$ at $c a .60^{\circ} \mathrm{C}$ (but not at $20^{\circ} \mathrm{C}$, cf. ref. 7) giving endo, exo-1,8.9,10-tetra-
chloro-11,11-dimethoxytetracyclo[6.2.1.1 $\left.1^{3,6} .0^{2,7}\right]$ dodec-9-en-4one (7) $\left[60 \%\right.$ overall from (5)], m.p. $75-76{ }^{\circ} \mathrm{C}$ (from a small volume of petroleum), $v_{\text {max. }} 1762$ (vs, $\mathrm{CH}_{2} \mathrm{CO}$), 1602 (m, $\mathrm{ClC}=\mathrm{CCl}), 2850(\mathrm{~ms}, \mathrm{OMe}), 1412\left(\mathrm{w}-\mathrm{m}, \mathrm{CH}_{2}\right.$ scissoring) cm^{-1}, $\tau(100 \mathrm{MHz}) 6.40(\mathrm{~s}), 6.45(\mathrm{~s}, 2 \mathrm{MeO}), 7.2-7.4[\mathrm{~m}, 4 \mathrm{H}]$ and $7.84[\mathrm{~nm}, 2 \mathrm{H}][\mathrm{H}(2,3,5,5,6,7)], 8.15(\mathrm{~m})$, and $8.59\left[\mathrm{~m},{ }^{2} J \mathrm{ca}\right.$. $13 \mathrm{~Hz}, \mathrm{H}(12,12)$] (Found: C, 45.5; H, 3.95. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 45.2 ; \mathrm{H}, 3.8 \%$).

Keto-acetal (7) ($1.0 \mathrm{~g}, 2.7 \mathrm{mmol}$) was stirred in $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(10 \mathrm{ml})$ for 4 h at $20^{\circ} \mathrm{C}$, the product poured onto crushed ice (precooled to $-30^{\circ} \mathrm{C}$), and the solid filtered off, thoroughly washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and dried in vacuo (18 h at $20^{\circ} \mathrm{C}$ then 2 h , $45{ }^{\circ} \mathrm{C}$) giving a product ($770 \mathrm{mg}, 83 \%$), m.p. $114-116^{\circ} \mathrm{C}$ (vigorous decomp.), $v_{\text {max. }} 1760$ [vs, $\left.\mathrm{C}(4)=\mathrm{O}\right], 1830$ [vw, trace $\mathrm{C}(11)=\mathrm{O}$], $1595(\mathrm{~s}, \mathrm{ClC}=\mathrm{CCl}), 3550$ (vs, OH) cm^{-1}, sparingly soluble in CDCl_{3}, mainly the $\mathrm{C}(11)$ gem-diol hydrate of diketone (8); the diketone (8) was obtained in a similar experiment by direct extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ $35 \mathrm{ml})$, the extracts being stirred with precipitated CaCO_{3}, allowed to settle overnight, and finally decanted and evaporated to give 4,11-diketone (8), m.p. $128-130^{\circ} \mathrm{C}$ (vigorous decomp.) ($820 \mathrm{mg}, 89 \%$), $v_{\text {max. }} 1830$ (sh), 1843 [vs, C(11)=O], $1762[\mathrm{vs}, \mathrm{C}(4)=\mathrm{O}], 1578(\mathrm{~ms}, \mathrm{ClC}=\mathrm{CCl}) \mathrm{cm}^{-1}, \tau(100 \mathrm{MHz})$, see below for (9), i.e. $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]-(8)$.
Diketone (8) was characterised as a norborn-2-en-7-one type by heating a small sample (ca. 50 mg) in toluene (3 ml) for 18 h , evaporation in vacuo, t.l.c., and recrystallisation of the residue (aqueous HOAc) giving exo-3,4,5,6-tetrachlorotricyclo[6.2.1.0 $0^{2,7}$] undeca-3, 5 -dien-9-one (8a) (ca. 30 mg), m.p. $119.5-120.5^{\circ} \mathrm{C}, v_{\max } 1745$ (vs, CO) and 1612 (vs, $\mathrm{ClC}=\mathrm{CCl}$) cm^{-1}, identical to a sample (m.p. and mixed m.p.) made from α-chloroketone (6) as follows. Acetal (6) (10 g) was added to $\mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{ml})$ and the solution was left at $20^{\circ} \mathrm{C}$ for 3 h and then kept at $0^{\circ} \mathrm{C}$ overnight, a solid separating; pouring onto crushed ice, filtration, and drying of the precipitate gave a bridge-carbonyl product $(8 \mathrm{~g})$ which was heated in HOAc $(40 \mathrm{ml})$ at the b.p. for 1.5 h . The solution was slightly diluted with water, and cooling precipitated exo-3,4,5,6-exo-10-pentachlovotricyclo $\left[6.2 .1 .0^{2, r}\right]$ undeca-3,5-dien-9-one ($7 \mathrm{~g}, 86 \%$), m.p. $165-166^{\circ} \mathrm{C}$, $\nu_{\text {max }}$ 1765 (vs, CO) and $1620(\mathrm{~ms}, \mathrm{ClC}=\mathrm{CCl}) \mathrm{cm}^{-1}, \tau 6.11$ [d, J 3 Hz , endo $-\mathrm{H}(10)$], 6.73 [dd, $\left.{ }^{2} J 12,{ }^{4} J 1 \mathrm{~Hz}, \mathrm{H}(7)\right], 6.90$ [dd. $\left.{ }^{2} J 12,{ }^{4} J 1 \mathrm{~Hz}, \mathrm{H}(2)\right]$ overlapping $6.82[\mathrm{~m}, \mathrm{H}(1,8)]$, and 7.66 , 7.9 [each d sextet, ${ }^{2} J 12 \mathrm{~Hz}, \mathrm{H}(11)$ syn and anti to exo$\mathrm{Cl}(10)] ; m / e 330\left(M^{+}\right)$, $295\left(M-\mathrm{Cl}^{+\bullet}\right)$, and $214\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{4}{ }^{+\cdot}\right)$ (Found: C, 39.95; H, 2.2. $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{5} \mathrm{O}$ requires $\mathrm{C}, 39.75$; $\mathrm{H}, 2.1 \%$). The 2,4-dinitrophenylhydrazone, m.p. $211{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 40.0; H, 2.3. $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{5} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 39.8 ; \mathrm{H}, \mathbf{1 . 9 5 \%}$). The ethylene acetal, m.p. $160-$ $161{ }^{\circ} \mathrm{C}$ (Found: C, 41.5; H, 2.8. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}_{5} \mathrm{O}_{2}$ requires C, $41.5 ; \mathrm{H}, 2.9 \%$). The pentachlorotricycloundecadienone above (12 g) was boiled in HOAc (180 ml) with zinc dust $(9 \mathrm{~g})$, the solution cooled and filtered, the filtrate heated and diluted with water to incipient cloudiness, whereupon crystals of exo-3,4,5,6-tetrachlorotricyclo[6.2.1.0 ${ }^{2,7}$]undeca-3,5-dien-9-one (8a) separated ($9.6 \mathrm{~g}, 89 \%$), m.p. 119.5-120.5 ${ }^{\circ} \mathrm{C}$ (aqueous HOAc), $\lambda_{\text {max. }}(\mathrm{EtOH}) 270 \mathrm{sh}(\varepsilon 2659), 281$ (4122), $292(5592), 305(5266)$, and $319 \mathrm{~nm}(3351), m / e 296\left(M^{+\bullet)}\right.$, $261\left(M-\mathrm{Cl}^{+\bullet}\right), 214\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{4}{ }^{+\bullet}\right)$, and $82\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}^{+\bullet}\right), \tau 6.8$ $7.0[\mathrm{~m}, \mathrm{H}(1,2,7,8)], 7.8[\mathrm{~cm}, \mathrm{H}(10,10)]$, and 7.93 (dnm) and 8.22 (dnm) $\left.{ }^{2} J 11 \mathrm{~Hz}, \mathrm{H}(11,11)\right]$ (Found: C, 44.7; H, 2.7. $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}$ requires $\mathrm{C}, 44.3 ; \mathrm{H}, \mathbf{2 . 7} \%$).
(i) The diketone (8) was used directly for reduction and isomerisation to dideuterioaldehyde $\left[7,12-{ }^{2} \mathrm{H}_{2}\right]-(12)$ as follows. Diketone (8) ($700 \mathrm{mg}, 2.05 \mathrm{mmol}$) was stirred under
nitrogen with $\mathrm{LiAl}^{2} \mathrm{H}_{4}(124 \mathrm{mg}, 2.95 \mathrm{mmol})$ in dry ether (50 ml) at $20{ }^{\circ} \mathrm{C}$ for 1 h . Work-up in the usual manner (aqueous HCl , washing, and drying) indicated reduction at $\mathrm{C}(11)=\mathrm{O}$ but $\mathrm{C}(4)=0$ partially survived, and the product was recycled with fresh $\mathrm{LiAl}^{2} \mathrm{H}_{4}$ as above giving after workup a mixture of solids, mainly endo-4-syn- and endo-4-anti11 -diols (10) (765 mg). Samples of the mixed diols (200 mg) were stirred in $\mathrm{CCl}_{4}(20 \mathrm{ml}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{ml})$ for $c a .17 \mathrm{~h}$ and the products isolated by ice-quenching and extraction $\left(\mathrm{CHCl}_{3}\right)$. The combined yields of three runs were chromatographed (as above) giving dideuterioaldehyde $\left[7,12-{ }^{2} \mathrm{H}_{2}\right]-(12)$ as one of two fractions ($54 \mathrm{mg}, 9.5 \%$), m.p. $140-141.5^{\circ} \mathrm{C}, \nu_{\text {max. }} 2870\left({ }^{2} \mathrm{HCO}\right), 2100-2150\left(\mathrm{bw},{ }^{2} \mathrm{H}-\mathrm{C}\right.$ st.), 1710 (vs, ${ }^{2} \mathrm{HCO}$), and $1620(\mathrm{vs}, \mathrm{ClC}=\mathrm{CCl}) \mathrm{cm}^{-1}, m / e 312$ $\left(\mathrm{C}_{12}{ }^{1} \mathrm{H}_{8}{ }^{2} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}^{+\bullet}\right), 282\left(M-{ }^{2} \mathrm{HCO}^{+}\right), 114\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{5}{ }^{2} \mathrm{HCl}^{+}\right)$, and $78\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{4}{ }^{2} \mathrm{H}^{+\cdot}, 114-{ }^{1} \mathrm{HCl}\right), \tau(100 \mathrm{MHz}) 5.68[\mathrm{~s}, \mathrm{H}(11)]$, 6.06 [dnm, J ca. $6.7 \mathrm{~Hz}, \mathrm{H}(6)], 7.08$ [dd, H(5)], 7.3 [d, very weak, residual $\mathrm{H}(7)], 7.58$ [cm, $\mathrm{H}(9)], c a .7 .75$ (t), 7.88 [d, $\mathrm{H}(10)$ syn], and 7.99 [$\mathrm{cm}, \mathrm{H}(10)$ anti, overlapping $\left.\mathrm{H}\left(8,8^{\prime}\right)\right]$.
(ii) Keto-acetal (7) ($750 \mathrm{mg}, c a . \mathrm{mmol}$) was dissolved in $\mathrm{MeO}^{2} \mathrm{H}(10 \mathrm{ml}), \mathrm{KOBu}^{\mathrm{t}}(30 \mathrm{mg})$ added, and the mixture left at $20^{\circ} \mathrm{C}$ for ca .18 h . Small chips of solid CO_{2} (wiped free of frost) were added and the solution evaporated in vacuo. The residue was dissolved in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ and re-evaporated to azeotrope out residual $\mathrm{MeO}^{1} \mathrm{H}-\mathrm{MeO}^{2} \mathrm{H}$; i.r. monitoring indicated complete loss of the characteristic $-\mathrm{C}^{1} \mathrm{H}_{2} \mathrm{CO}-$ scissoring frequency near $1412 \mathrm{~cm}^{-1}$. The product, dissolved in $\mathrm{CCl}_{4}(8 \mathrm{ml})$ was stirred with ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{ml})$ overnight and the dideuterioketone (9) ($624 \mathrm{mg}, \mathbf{9 5 \%}$) isolated by direct extraction $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as above, $v_{\text {max. }} 1830(\mathrm{sh})$, 1843 $[\mathrm{vs}, \mathrm{C}(11)=\mathrm{O}], 1762[\mathrm{vs}, \mathrm{C}(4)=\mathrm{O}]$, and $1578(\mathrm{~ms}, \mathrm{ClC}=\mathrm{CCl})$ cm^{-1}, no absorption at $1400-1460 \mathrm{~cm}^{-1}$, $\mp(100 \mathrm{MHz})$ $7.00[\mathrm{~nm}, \mathrm{H}(3,6)], 7.27$ (d) overlapping $7.36[\mathrm{~d}, J c a .9 \mathrm{~Hz}$, $\mathrm{H}(2,7)]$, and $8.04,8.44$ [both dm, $\left.{ }^{2} J c a .13 \mathrm{~Hz}, \mathrm{H}(12,12)\right]$.

The dideuterioketone (9) ($278 \mathrm{mg}, 0.85 \mathrm{mmol}$) was treated with $\mathrm{LiAl}^{2} \mathrm{H}_{4}(200 \mathrm{mg}, 4.76 \mathrm{mmol})$ under N_{2} in dry ether $(50 \mathrm{ml})$ for 1.5 h with stirring and the product isolated in the usual manner after quenching with a little ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. The crude tetradeuterioalcohol mixture (169 mg) treated in duplicate runs using ${ }^{1} \mathrm{H}_{2} \mathrm{SO}_{4}(2.5 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and the products combined and chromatographed (t.l.c.) as before gave as the main fraction $\left[7,8,8,12-{ }^{2} \mathrm{H}_{4}\right]$-(12) $(15 \mathrm{mg}$, $6 \%)$, m.p. $141-142{ }^{\circ} \mathrm{C}\left(\mathrm{CCl}_{4}\right), v_{\text {max. }} 2870\left(\mathrm{~ms},{ }^{2} \mathrm{HCO}\right), 2100-$ 2150 ($\mathrm{w},{ }^{2} \mathrm{H}-\mathrm{C}$ st.), 1710 (vs, ${ }^{2} \mathrm{HCO}$), and 1620 (vs, $\mathrm{ClC}=\mathrm{CCl}) \mathrm{cm}^{-1} ; m / e 314\left(\mathrm{C}_{12}{ }^{1} \mathrm{H}_{6}{ }^{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}^{+}, 61 \%\right), 313\left(\mathrm{C}_{12}{ }^{-}\right.$ $\left.{ }^{1} \mathrm{H}_{7}{ }^{2} \mathrm{H}_{3} \mathrm{Cl}_{4} \mathrm{O}^{+\cdot}, 32 \%\right), 284\left(M^{+\cdot}-{ }^{2} \mathrm{HCO}\right), 116\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{3}{ }^{2} \mathrm{H}_{3}\right.$ $\left.\mathrm{Cl}^{+\bullet}\right)$, and $80\left(\mathrm{C}_{6}{ }^{1} \mathrm{H}_{2}{ }^{2} \mathrm{H}_{3}{ }^{+\bullet}\right)$ and similar fragments from $M^{+\bullet}$ $313,{ }^{1} \mathrm{H}$ n.m.r. in Table 4.

We thank the S.E.R.C. for a Research Studentship (K. A. M.) and for financial assistance. We also thank Shell Research (U.K.) Ltd. and Hooker Chemical Corporation (U.S.A.) for gifts of materials. We express our warm appreciation to Professor K. Fukui, Kyoto University, Japan, for his interest, and Dr. R. W. Alder, Bristol University, for helpful discussions. Preparative routes to compounds (6), (7), and (8a) were developed by one of us whilst at Bedford College, University of London and we thank Professor P. B. D. de la Mare for his interest.
[1/1392 Received, 4th September, 1981]

REFERENCES

${ }^{1}$ S. Inagaki, H. Fujimoto, and K. Fukui, J. Am. Chem. Soc., 1976, 98, 4054, 4693; L. Libit and R. Hoffmann, ibid., 1974, 86, 1370.
${ }^{2}$ K. B. Astin, A. V. Fletcher, A. A. Frew, K. Mackenzie, K. W. Muir, A. S. Miller, and N. M. Ratcliffe, J. Chem. Soc., Perkin Trans. 2, 1982, 111; A. V. Fletcher and K. Mackenzie, Tetrahedron Lett. 1975, 1513. Note: the numbers (1) and (2) under the formulae on p. 1513 should be interchanged.
${ }^{3}$ J. W. ApSimon, J. A. Buccini, and A. S. Y. Chan, Tetrahedron Lett., 1974, 539.
${ }^{4}$ S. Winstein and L. de Vries, J. Am. Chem. Soc., 1960, 82, 5363 ; P. Bruck, D. Thompson, and S. Winstein, Chem. Ind. (London), 1960, 405, 590; S. Winstein and R. L. Hansen, J. Am. Chem. Soc., 1960, 82, 6206; S. B. Soloway, A. M. Damiana, J. W. Sims, H. Bluestone and R. E. Lidov, ibid., p. 5377; C. W. Bird, R. C. Cookson, and E. Crundwell, J. Chem. Soc., 1961, 4809; J. W. ApSimon, K. Yamasaki, A. Fruchier, and A. S. Y. Chan, Tetrahedron Lett., 1977, 3677; M. A. Battiste, J. F. Timberlake, L. A. Paquette, C. R. Degenhardt, J. T. Martin, E. Hedaya, T. M. Su, and S. Theodorpulos, J. Chem. Soc., Chem. Commun., 1977, 941 ; $c f$. R. S. Bly, R. K. Bly, A. O. Bedenbaugh, and O. R. Vail, J. Am. Chem. Soc., 1967, 89, 880.
${ }^{5}$ R. B. Woodward, T. Fukunaga, and R. C. Kelly, J. Am. Chem. Soc., 1964, 86, 3162.
${ }^{6}$ E. Osawa, K. Aigami, and Y. Inamoto, Tetrahedron, 1978, 34, 509 and references cited; T. Sasaki, K. Kanematsu, and A. Kondo, J. Org. Chem., 1974, 39, 2246; Tetrahedron, 1975, 31, 2215; J. Chem. Soc., Perkin Trans. 1, 1976, 2516; N. S. Zefirov, V. N. Kirm, A. S. Kosinin, I. V. Bodrikov, and E. N. Kurkutova, Tetrahedron Lett., 1978, 2617; 1979, 1547.
${ }^{7}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem.
Phys., 1965, 42, 3175.
s'International Tables for X-Ray Crystallography', Kynoch Press, Birmingham, 1974, vol. 4.
${ }^{9}$ G. M. Sheldrick, SHELXTL System of Crystallographic Programs for Use with the Nicolet $P 3 m X$-ray System, Cambridge, 1976.
${ }^{10}$ K. Mackenzie, J. Chem. Soc., 1960, 473; W. P. Lay and K. Mackenzie, Tetrahedron Lett., 1970, 3241.
${ }_{11}$ C. H. M. Adams, D. J. Cawley, and K. Mackenzie, J. Chem. Soc., Perkin Trans. 2, 1973, 909.

[^0]: \dagger Unless otherwise stated all signals are of the correct relative intensity; chemical shift (τ) and apparent multiplicities refer to 220 MHz spectra; $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet, $\mathrm{n}=$ narrow, $\mathrm{q}=$ quartet, $\mathrm{c}=$ complex.

[^1]: * For example, almost all reasonably derived structures employing mechanistic precedent suggest the -CHCl group might result from hydride transfer, and in the product the ${ }^{1} \mathrm{H}$ signal (B) would be expected to show at least small couplings at high

[^2]: * The compound could be considered to be an endo-methanotetrahydrotriquinacene; ${ }^{5}$ with the functionality present an interesting speculation concerns its possible conversion into triquinacene derivatives.

[^3]: \dagger The striking effectiveness of the cyclopropylmethyl π-system in providing a demonstrably accessible stable refuge in otherwise mechanistically demanding polycyclic cation rearrangements has recently been revealed. L.R. Schmitz and T.S. Sorensen, Tetrahedron Lett., 1981, 22, 1191.

